
State Language for Machine Control

A White Paper

State Language for Machine Control
by Kenneth C. Crater,
Control Technology Co

Introduction
State languages have recently come to the forefront
approaches to automation programming. The temp
“new” automation tool, since it has only recently re
trade journals. In fact, the use of state languages in
1970s, when the early implementations of Quickstep
function of electromechanical cam programmers. T
control is older still, having its foundation in Petri N
described by Carl Adam Petri[3] his PhD thesis in t

There is still much confusion as to what constitutes
one for automation applications, and what economi
clarify some of these questions in this paper. Furth
of state language technology in automation is a dire
new demands being placed on manufacturing orga
next new language”, state languages came into exis
could no longer be adequately addressed using pre

Why State Language? Why Now?
The emergence of state language as a preferred pro
occurring in isolation. Rather, it reflects sweeping c
of industrial automation. Referring to Figure 1, eac
automation technology was both a reflection and a
technologies and techniques used by practitioners.

In the early days of hard automation, stand-alone fi
predominant practice. Information was transported
actuation was largely mechanical (transitioning to p
programming and user controls were hardwired. T
and were also consistent with the primary goal of a
labor input and decrease unit cost of production.

Figure 1. The evolution of automation has, by nece
by parallel changes in all underlying tools and techn
Chairman
Page 1

rporation

of discussions on superior
tation is to view state language as a

ceived attention in our industry’s
control dates back at least to the late
[1][2] were developed to mimic the

he theoretical basis of state language
et theory as developed and

he early 1960s.

a state language, how best to use
es exist in their adoption. I hope to
er, I will show that the increased use
ct response to some very specific

nizations. Far from being “just the
tence to address problems which
existing programming techniques.

gramming paradigm is not
hanges taking place in the practice
h stage in the development of
determinant of the underlying

xed-function systems were the
via clipboard (the physical kind),

neumatic/hydraulic), and
hese practices were self-consistent,
utomation at that time: to reduce

ssity, been accompanied at each step
ologies.



State Language for Machine Control Page 2

The quickening pace of global markets, commencing in the 1970s and continuing
through the 1980s, drove the need for flexible automation. Among the new
technologies employed to meet this challenge were PLCs, increasingly integrated with
minicomputers and later with personal computers, organized in workcells within which
configuration and production information was shared. It was in this environment that
the innovation of relay ladder logic thrived, allowing a modest degree of complexity in
automation strategies and providing the decision-making tools for flexible machines.
This language also allowed a further degree of flexible through reprogramming,
reducing the cost of responding to changing market needs.

Again, this was an internally-consistent toolset, adopted in response to environmental
conditions. Flexible tooling allowed the increasing cost of automation, and floorspace,
to be shared among several product variants, and improved the ability of production
management to respond to quixotic markets.

Now in the mid-1990s, automation techniques are being driven by information
requirements, coupled with an unprecedented need for agility. The factors in this
environment which directly affect the selection of automation technologies include:

Dramatic market and technological change – Agility has been called that characteristic
which allows an organization to thrive in an environment of constant and unpredictable
change[4]. In the face of such change, companies are adopting strategies which provide
the greatest ease of retooling, and the greatest extent of flexibility without retooling.
Among these strategies are the use of more highly integrated systems and
corresponding languages that reduce the costs of interfacing motion control, data
acquisition, communications and other requisite technologies. This paper will show
how state language can accommodate this higher level of integration and thus decrease
development time substantially.

Broadened expectations of quality – The definition of quality has changed, and it has
become a non-negotiable expectation in many markets. Two critical technologies for
implementing quality programs are analog data acquisition, for the purpose of making
qualitative measurements, and communications for presenting data to remote
monitoring, storage and retrieval systems. Previous control techniques were ill-
equipped to accommodate these requirements, and often required supplementing with
secondary systems. State language, however, provides a mechanism for integrating
these requirements with the control program in a concise and meaningful manner.

The advent of the information age – Every major manufacturing company has in place
an extensive information network, and either has or will extend that network to the
plant floor. The same expectations of access, visibility, and control which have come
about in the office environment are now making their way to the plant floor. Older,
boolean-based programming methods for automation do not present an information-
rich resource, however, and fail to meet these expectations.

The shifting role of the manufacturing worker – Initial automation efforts were
focused on extending the physical capabilities of human workers— exerting more
power, extending their precision, allowing work in intolerable environments. Then, the
focus moved to cost savings, increasing output per labor hour expended by replacing
human effort with machine effort. In the process, however, the intellectual contribution
of the worker was lost— the inflexible machine was uninterested in the human



State Language for Machine Control Page 3

operator’s opinion of the quality of output, therefore the worker lost the ability to make
a difference. The inevitable result was a demotivation and de-skilling of the workforce.

Now, however, many companies are recognizing the necessity of recapturing the value
added by the human workers’ intellect. Ironically, this sometimes points to a conscious
limiting of the extent of automation, providing some measure of additional qualitative
control which may be exerted by the operator[5]. Maintaining reasonably high levels of
automation, while simultaneously allowing such qualitative control requires
automation systems with additional capabilities. Mathematical functions, extensive
parameter storage and communication, enhanced operator interface facilities,
sensing/reporting capabilities and integrated motion control for making mechanical
adjustments are all enabling technologies to meet this requirement. The simple control
languages of the last decade fail in many respects to fulfill these needs, although it will
be shown that the state language framework can do so.

The Framework of State Languages
The appeal of the state language framework resides in its simplicity and its fit with the
problems being addressed. In the discrete manufacturing world and, to some extent, in
the batch and continuous process worlds, these problems often consist of a series of
steps or states which a machine must go through to perform a series of operations on a
workpiece or product batch. Ignoring, for a moment, the more complex case of
asynchronous operations, a state language can exactly mimic the structure of this type
of problem.

The fundamental tool of a state language is the state, or “step”. A step defines the
complete status of the machine or process (or a portion thereof) for a finite period of
time. Typically, this status consists of two components:

a. One or more commands to create a motion or change, thus causing a new physical
state to be adopted by the machine or process.

a. One or more instructions to limit the duration of the step, and specify the next step
to proceed to upon completion of the current step.

Note that either of these components may be arbitrarily complex. The motion
command may be as simple as a single digital output change, perhaps to actuate a
pneumatic solenoid valve. However, it may instead be as sophisticated as multiple
commands to initialize and turn a series of servo motors, specifying motion and tuning
parameters as well as terminal positions for each.

Figure 2. The components of a simple state language program, showing motion
commands (left) and instructions for proceeding to a new state (right).



State Language for Machine Control Page 4

The instructions for terminating a step may be as simple as a time delay instruction, or
an instruction to monitor a single digital input – perhaps wired to a limit switch.
However, they may get as complex as instructions to
read multiple analog input values, representing
temperatures, positions, and other variables, combine
them mathematically, and decide upon a new direction
for the program to take depending on the outcome.

The flexibility provided by this framework is quite
powerful. Because the framework allows very high-level
commands to be implemented, a state language can
“keep current” with evolving actuation and sensing
technologies. But the real advantage may best be seen by
examining a state language program in overview.

The structure of the resulting program bears a striking
resemblance to a flowchart of the desired operation of the
machine. This one-to-one correspondence is responsible
for much of the savings in development, debug, and
maintenance time attributable to state language use. It
provides a further benefit by demystifying the operation
of a control program, allowing other members of a
design team to understand, review, and comment upon
the program’s structure. The program listing may
therefore become a common point of communication
among the controls engineer, machine designer, process
engineer or industrial engineer, information systems
engineering, maintenance personnel, and even the
machine’s operator. This creates an environment where
each team member is able to maximize their contribution
to the automation effort.

A Comparison to Relay Logic
By far the most prevalent language in the control of
automated machinery today is relay ladder logic (RLL).
The purpose of RLL was to provide a language to
emulate the functionality of the electromechanical relays Figure 4. The structure of a

simple state language program.

Figure 3. A simple step implemented in a practical state language, Quickstep.



State Language for Machine Control Page 5

which had previously been used to build logic
systems for control. Before engaging in a
comparison, it must be noted that the adoption
of RLL was an essential step in achieving the
acceptance of electronic controls in the factory
environment. The use of this language allowed
the plant electricians who maintained the
previous electromechanical controls to become
familiar with a new generation of electronic
controls. At the same time, RLL facilitated the
migration of old control schemes from
electromechanical methods to electronic methods.

The essential elements of RLL are the coil, analogous to the electromagnetic coil of a
mechanical relay, and the contact, typically associated via labeling with one of the coils
which “actuates” the contact. These elements may be seen in Figure 5. Contacts may
be of one of two types: normally-open or normally-closed. Normally-open contacts are
said not to pass any “current” when the associated coil is inactive. Conversely,
normally-closed contacts pass current only when the associated coil is inactive. In
either case, the current, of course, is imaginary and is used only to represent the
behavior of the program.

In actual practice, the contacts of an RLL program are used in various combinations, in
such a way that they model a Boolean equation. An example of such a combination,
along with the
equivalent equation,
is shown in Figure 6.
When contacts are
paralleled, their op-
eration is the equiva-
lent of a Boolean OR
function. When
contacts are in series,
their equivalent func-
tion is the Boolean
AND.

The runtime execution of such a diagram consists of a cyclical scanning of the entire
diagram, examining the current state of all contacts and then determining which coils
should be active at that moment. The contacts associated with the active coils will, on
the next scan, assume their active state which may in turn affect the status of other coils,
etc.

In practical machine control applications, the use of RLL brings with it substantial
additional overhead. Most automated machines have a natural sequence of events by
which they convert a raw material or unfinished workpiece into a finished product.
This sequence typically consists of a series of mechanical states the machine must
assume, driven by the control system. To program such a series of states using RLL, it
is necessary to use a number of latches, with each latch being built from a number of
RLL elements.

Figure 5. The basic elements of Relay
Ladder Logic.

Figure 6. A typical rung and the equivalent Boolean equation.



State Language for Machine Control Page 6

Figure 7 illustrates this technique. An external event, sensed by LIMIT_SWITCH,
provides energization to the coil M1. The contacts from M1 then close, bypassing
LIMIT_SWITCH and providing continuous “current” to the coil for M1. This coil then
remains latched, even if LIMIT_SWITCH de-energizes. Additional contacts from M1
may then be used elsewhere in the program to enable those events which should only
occur subsequent to this portion of the machine’s sequence. This is illustrated in the
second rung of Figure 7, where a contact from M1 in conjunction with a second external
input, LIMIT_SW2, may then engage another coil, labeled M2. In this case, a normally-
closed contact from M2 then opens and de-energizes the coil M1, signaling a
progression from one state to another.

The necessity to build “statefulness” into a program through the programming of
latches may not be a significant inconvenience in a small program, but as programs
grow in complexity the additional burden added by this requirement becomes
substantial and cumbersome.

The proliferation of many non-
Boolean technologies in
automation has also greatly
diminished the efficiency of RLL
as a programming language.
Servo and stepping motor control,
analog data acquisition and
control, and intensive data
gathering and communications
were not predicted by RLL, nor
are they adequately
accommodated. Such control
requirements are usually
addressed in RLL by injecting the
new element of a function block,
which occupies the place of a coil
in the relay diagram. The
function block is triggered by one
or more contacts, and then executes whatever instructions are contained within it.
Often, these are expressed as a series of codes to be sent to a dissimilar motion
controller, communications port, etc.

The necessity of supplementing RLL with instruction elements of a completely different
paradigm, coupled with the lack of a pre-existing structure for the most common
requirement of machine control, has now become a substantial obstacle to
contemporary automation efforts. In large part, the increasing acceptance of state
language technology is a response to that fact.

State Language Contrasted With SFC
The field of programming languages for automation has seen much activity in recent
years, again as a reflection of changing needs. One of the more visible efforts has been
the move to standardize a group of older languages, mostly Boolean or procedural
languages, under the nomenclature IEC-1131-3[6]. Unfortunately, there has been much
controversy[7][8] and confusion generated by this effort, particularly with respect to the

Figure 7. Establishing statefulness using Boolean
latches.



State Language for Machine Control Page 7

inclusion of a function chart framework (Sequential Function Chart, or “SFC”) as part of
the standard.

SFC is not a language, nor was it intended
to be. Rather, it is a means of encapsulat-
ing Boolean or procedural code in the
form of a flow chart. Yet, characteriza-
tions in the trade press have misled many
into the belief that a structure and syntax
exists in IEC-1131-3 for a state language.

As shown in Figure 8, taken from the
draft version of the standard, SFC
programs are actually composed of
language elements drawn from the
standard’s underlying languages. These
languages, two combinatorial (Ladder
Diagram and Function Block Diagram)
and two procedural (Instruction List and
Structured Text), are in fact the
alternatives that Control Engineers have
been living with for the past two decades.
As such, they fail to answer the changing
requirements of automation programming
mentioned in the introductory
paragraphs.

Integrating Non-digital Functions
Many of the operations which have now become necessary additions to manufacturing
operations involve such non-digital functions as servo control, analog data acquisition,
and data manipulation and storage. These functions are often complex, and require
embedded descriptive and parametric data. The textual representation of state
language instructions allows high-level instructions to be included to accommodate
these functions.

Figure 8. A sequence transition using
IEC-1131-3 elements. Note that the
content of blocks STEP7 and STEP8
must be expressed in one of the
combinatorial or procedural languages
specified in the standard.

Figure 9. Inclusion of non-digital functions in a state language “step”.



State Language for Machine Control Page 8

Figure 9 illustrates the use of high-level commands to accomplish servo control. In this
implementation, the motion commands are in the same portion of the step as the
monitor instruction for terminating the step. Although initially this may seem like a
departure from the structure described earlier, which noted a clear separation between
motion commands and step-transition instructions, there are important functional
reasons for this intermingling.

The most significant reason is that intermingling allows complex decision-making to be
performed within a single step. For example, the series of instructions in Figure 10 call
for successive values to be stored in a numeric register. After each new value is stored,
a test is made of a gauging device on an analog input, testing for successively higher
values. Once a test succeeds, an immediate jump is made to the next step, with the
resulting classification value stored in the numeric register. Using this approach, the
kind of decision-making that is typical in a procedural programming language (and
often necessary in machine control) may be accomplished without the awkwardness of
using large numbers of steps.

Handling Asynchronous Operations
The earliest attempts to develop a truly general
automation language within a state framework
found only limited application due to a single
fundamental flaw. Although the vast majority of
machine control applications can most suitably be
cast as a state-based sequence, there are
frequently multiple such sequences which must
be controlled simultaneously and asynchronously
on a single machine. Attempts to merge these
sequences into a single linear flow of events not
only result in a lack of clarity, but also may carry significant performance penalties.

Figure 10. Complex decision-making in a step using procedural techniques.

Figure 11. Flow representation
of multitasking.



State Language for Machine Control Page 9

This was resolved in the early 1980s with the implementation of multitasking in
conjunction with a state language. The state language framework allows multitasking
to be incorporated in an elegant and consistent manner, simply by the addition of a new
instruction. In the example shown in Figure 12, the instruction do will cause the
program flow to split into two separate paths, each of which operates independent of
the other. The targets of this instruction, two steps named load_workpiece and
check_status, each commence a sequence of steps which will run asynchronously to
completion.

The resultant program flow, shown in Figure 11, accommodates instances where a
number of simultaneous, but independent, operations must be performed. It is possible
to nest such tasks further, allowing highly complex machines to be divided down and
controlled in terms of their native sequences.

This mechanism for multitasking has a utility beyond the simple accommodation of
parallel asynchronous tasks. It encourages the modularization of programs by creating
a new organizational unit beyond the step level: the task.

Encapsulation: The Future of Control Language Evolution
The task construct points the way to a use of state language that makes even further
progress toward the reduction of complexity. Today, state language programs may be
organized such that most of a machine’s functionality resides in tasks, each task relating
to one mechanism or mechanical module on the machine. Using this approach, the
program can become almost trivially easy to maintain.

When this programming practice is followed, the “main” program for a machine
becomes a short sequence of task invocations, clearly representing the “overview”
functionality of the machine. To examine the details of a given operation, you move to
the appropriate task and the sequence of events for that portion of the program is stated
in a clear and concise manner.

This technique, referred to as encapsulation, allows the complexity of the detailed control
of a machine’s actuators to be hidden from view when examining the “top level”
program flow for a machine. This makes the program easier to understand, and acts as
a navigation aid for finding the portion of a potentially lengthy and complex program
you wish to examine or modify.

Figure 12. An example of multitasking implemented in a state language.



State Language for Machine Control Page 10

State languages provide a natural means to encapsulate complexity. Work is now being
performed to develop higher-level, and more powerful, encapsulation tools to meet the
projected demands of an increasingly complex manufacturing environment.

Summary
Changes in automation requirements and practices have resulted in increasing
dissatisfaction with traditional programming methods. This has caused a
reexamination of language options, and a trend toward the adoption of state language
as the programming paradigm of choice. State languages can substantially remove
barriers to the incorporation of new sensing and actuation technologies, better
accommodate complex applications, and facilitate understanding of machine
functionality among an increasingly diverse base of stakeholders.

Encapsulation techniques, used in conjunction with underlying state language
programs, promise further reductions in design time and apparent complexity.

References
[1] Crater, Kenneth C. A New Control Paradigm. Proceedings, 1991 Industrial
Computing Society Conference, pp. 545-556. http://www.control.com/

[2] Control Technology Corporation. Quickstep Language and Programming Guide.
Control Technology Corporation, 1996.

[3] You can visit Dr. Petri’s website at
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html,
although a more illuminating website for the investigation of Petri nets is at
http://www.daimi.aau.dk/PetriNets/.

[4] Dove, Rick. The 21st Century Manufacturing Enterprise Strategy, or What is All This Talk
About Agility? Paradigm Shift International, 1992.

[5] Martin, T. Human Software Requirements Engineering for Computer-controlled
Manufacturing Systems. Automatica, Vol. 19, No. 6, pp. 755-758, 1983.

[6] EC1131 Part 3-93. Programmable controllers - Part 3: Programming languages. 1st
edition. Geneva, Switzerland: International Electrotechnical Commission, 1993.

[7] Grenard, Jack, et al. IEC-1131-3 Roundtable Discussion.
http://www.control.com/carefree/roundtables/1131.html

[8] Crater, Kenneth C. When Technology Standards Become Counterproductive.
http://www.control.com/tutorials/language/counter.htm, July 8, 1992.

About the Author
Ken Crater is President and cofounder of Control Technology Corporation, a producer
of automation controllers and software which make use of state language technology.
Mr. Crater also cofounded the Industrial Computing Society, in which he served as first
President. He was recently elevated to Fellow of that Society for making significant
advances in the technologies of machine automation and programmable logic
controllers, including his early work in the pioneering of state language for machine
control.


