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The performance of an electrical velocity servo is a measure of how well the servo drive 
will maintain its commanded velocity under varying load disturbances. The ability to 
maintain a velocity under load changes is expressed as the regulation of the servo drive 
usually expressed as percent regulation. A typical electric servo drive with a current loop 
for torque regulation is shown in the block diagram of figure 1. Since the two servo loops 
are interacting, block diagram algebra is used to rearrange the block diagram into two 
independent servo loops as shown in figure 2. 
 

 
The rearranged block diagram of the motor and current loop will then be included into a 
velocity feedback servo loop shown in figure 3. The motor and current servo loop has PI 
compensation. The external velocity servo loop is shown with a lag/lead compensation 
but could just as well also be PI compensation. Most commercial electric servos also 
have an added position servo loop, which can increase the velocity regulation to a very 
large extent. This discussion is limited to an electrical velocity servo, which can be a dc 
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servo drive or a brushless dc (BLDC) servo drive. Speed regulation with an added 
position servo loop is the subject of another discussion. 
 

 
 
To discuss the regulation of a velocity servo drive, the block diagram of figure 3 is 
rearranged in figure 4 to show motor velocity (Vo) as a function of torque load (Tl) 
changes. The inner current servo loop of figure 3 is expressed as eq.1. For the steady state 
condition the current servo loop is given as eq. 2. 
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The external velocity servo loop is given in eq (3) with the steady state condition as eq 
(4). 
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A readily available parameter of commercial servo drives is shown as the open loop gain  
(Kvo) of the velocity servo. Equation (5) is the open velocity servo loop gain (Kvo) with 
the steady state solution in eq (6). 
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The drive regulation can be computed from figure 4 with eq (7) and eq (8) for the steady 
state solution. 
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Equation 8 is rearranged as given in eq 9. The open loop servo gain of eq (6) is 
rearranged in eq(10). Substituting eq (10) into eq (9) results in eq (11), which is 
simplified in eq (12). 
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Dimensional Analysis 
 
It is important to know the units of the parameters in eq. (12) for both dc and BLDC 
electric servos. The unit dimensions are shown as follows: 
 
 
     DC DRIVES   BLDC DRIVES 
 

Ra (Armature resistance)  Ra[ohms]   ][
2

)( ohms
R lla −  

 
 
 
 
 

Ke (Voltage constant)   ]sec[
rad

volts −   ]
rad
secvolts[

3

K )ll(e −−  

 
 

Kt )Torque constant)   



 −
rad
inlb

    



 −
rad
inlb  

 
 
 

Kvo (Open loop gain)   




volt
volt

     




volt
volt  

 
 
 
Dimensional analysis of eq 12  
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EXAMPLE 
 
Motor – Kollmorgen   M607B 
 

[ ] [ ]ohm094.0
2
ohm189.0

2
R )ll(a ==−  

 





 −

==−

rad
secvolt3729.0

3
646.0

3
K )ll(e  

 
Rated Torque= 396[lb-in] 
 





 −

=
A
inlbKt 9.9  

 
Rated Speed= 3000[rpm] 
 

Kie= Current loop feedback constant = 



=
A
v075.0

A40
v3  

 





=
v
vK 201  

 





 −

=
rad
secvolt0286.0KTA  

 





=
volt
voltK 6512  

 





===
volt
volt1000

3729.0
651x20x0286.0
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KxKxK
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REGULATION 
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Speed drop at rated torque and rated speed- 
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[ ]rpmx
rad
revxrad 626.1

min
sec60
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17.0 =
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REGULATION= [ ]
[ ] 000542.0
rpm3000
rpm626.1

speedRated
speedinChange

==  

 
Velocity servo % REGULATION= 0.000542 x 100= 0.0542 % 
 
If a position loop is added to the velocity servo drive the block diagram is shown in 
figure (5) . The position loop velocity constant (Kv) is the position open loop gain. 
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Reducing eq (13) yields 
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Rearranging eq (6) yields 
 

TA21voe KKKKK =         eq (15) 
 
Substituting eq (15) into eq (14) yields 
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Rearranging yields 
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From figure 6, the position )(θ vs Torque (T) is expressed as- 
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Substituting eq (17) into eq (19) yields 
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Figure 5 is the position servo block diagram. The input command and the output oθ  are 
in radians. However if the input command is a given position over a period of time; that 
is a velocity, and the output position follows the command with a lag and this lag is 
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defined as the “following error” in a type 1 position servo. Therefore, if the input 
command and the output is differentiated ( sθ ), the drive will be in a velocity mode 
expressed as- 
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Dimensional check of eq (22) 
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EXAMPLE 
 
Using the same motor as in the previous example with the same torque and velocity inner 
servo loop, the new variable is the position open loop gain (velocity constant) Kv. Thus 
the variables are repeated as- 
Ra=0.094 [ohms] 
Ke=0.3729 [volt-sec/rad] 
Rated torque= 396 [lb-in] 
Kt=9.9 [lb-in/amp] 
Rated speed= 3000[rpm] 
Kie=0.075[volt/amp] 
Ki= 20 [v/v] 
KTA=0.0286[volt-sec/rad] 
K2=651[volt/volt] 
Kvo=1000[volt/volt] 
 
The position loop gain will be Kv=1 [ipm/mill]= 16.66 [rad/sec] 
The regulation of equatrion (22) can be calculated as- 
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Speed drop at rated torque and rated speed- 
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REGULATION= [ ] 0000326.0
rpm3000
rpm0979.0

speedrated
speedinchange

==  

Position servo in velocity mode % REGULATION=0.0000326 x 100= 0.00326% 
 
 
Reference: G. Younkin, INDUSTRIAL SERVO CONTROL SYSTEMS-Fundamentals 
and Applications, 2nd Edition, Chapter 12, 2002, Marcel Dekker, Inc, N.Y.,N.Y. 
  


