ELECTRIC VELOCITY SERVO REGULATION

George W. Younkin, P.E.
Life FELLOW - IEEE
Industrial Controls Consulting, Div.
Bulls Eye Marketing, Inc.
Fond du Lac, Wisconsin

The performance of an electrical velocity servo is a measure of how well the servo drive will maintain its commanded velocity under varying load disturbances. The ability to maintain a velocity under load changes is expressed as the regulation of the servo drive usually expressed as percent regulation. A typical electric servo drive with a current loop for torque regulation is shown in the block diagram of figure 1 . Since the two servo loops are interacting, block diagram algebra is used to rearrange the block diagram into two independent servo loops as shown in figure 2.

Fig. 1 Electric servo-drive bleck diagram.

Fig. 2 Electric servo-drive block diagram.

The rearranged block diagram of the motor and current loop will then be included into a velocity feedback servo loop shown in figure 3. The motor and current servo loop has PI compensation. The external velocity servo loop is shown with a lag/lead compensation but could just as well also be PI compensation. Most commercial electric servos also have an added position servo loop, which can increase the velocity regulation to a very large extent. This discussion is limited to an electrical velocity servo, which can be a dc
servo drive or a brushless dc (BLDC) servo drive. Speed regulation with an added position servo loop is the subject of another discussion.

Fig. 3 Electric servo-drive biock diagram.

To discuss the regulation of a velocity servo drive, the block diagram of figure 3 is rearranged in figure 4 to show motor velocity $\left(\mathrm{V}_{\mathrm{o}}\right)$ as a function of torque load $\left(\mathrm{T}_{1}\right)$ changes. The inner current servo loop of figure 3 is expressed as eq.1. For the steady state condition the current servo loop is given as eq. 2.

Fig. 4 Electric servo-drive block diagram.

$$
\begin{align*}
& \frac{i}{v_{i}}=\frac{K_{l}\left(t_{a} s+1\right)}{\left(t_{b} s+1\right)\left(\frac{l}{r} s+1\right) R_{a}+K_{l}\left(t_{a} s+1\right) K_{i e 3}} \tag{1}\\
& \frac{i}{v_{i}} \frac{}{s \rightarrow 0}=\frac{K_{l}}{R_{a}+K_{l} K_{i e}} \tag{2}
\end{align*}
$$

The external velocity servo loop is given in eq (3) with the steady state condition as eq (4).
$\frac{V_{o}}{v_{r}}=\frac{K_{l}\left(t_{a} s+1\right) K_{t}}{\left.\left[t_{b} s+1\right)\left(\frac{l}{r} s+1\right) R_{a}+K_{l}\left(t_{a} s+1\right) K_{i e}\right] J_{t} s+K_{l}\left(t_{a} s+1\right) K_{t} \frac{\left(t_{b} s+1\right) K_{e}}{K_{l}\left(t_{a} s+1\right)}}$

$$
\begin{equation*}
\frac{V_{o}}{v_{r}} \frac{K_{l} K_{t}}{s \rightarrow 0}=\frac{K_{l}}{K_{l} K_{t} \frac{K_{e}}{K_{l}}}=\frac{K_{e}}{K_{e}} \tag{4}
\end{equation*}
$$

A readily available parameter of commercial servo drives is shown as the open loop gain $\left(\mathrm{K}_{\mathrm{vo}}\right)$ of the velocity servo. Equation (5) is the open velocity servo loop gain $\left(\mathrm{K}_{\mathrm{vo}}\right)$ with the steady state solution in eq (6).

$$
\begin{gather*}
K_{v o}=\frac{K_{T A} K_{2}\left(t_{l} s+1\right) K_{l}\left(t_{a} s+1\right) K_{t}}{\left.\left(t_{2} s+1\right)\left[\left(t_{b} s+1\right)\left(\frac{l}{R}\right) s+1\right) R_{a}+K_{l} K_{i e}\left(t_{a} s+1\right)\right] J_{t} s+K_{l}\left(t_{a} s+1\right) \frac{K_{t}\left(t_{b} s+1\right) K_{e}}{\left(t_{a} s+1\right) K_{l}}} \text { eq (5) } \\
K_{v o}=\frac{K_{T A} K_{2}}{\frac{K_{e}}{K_{1}}}=\frac{K_{T A} K_{1} K_{2}}{K_{e}} \tag{6}
\end{gather*}
$$

The drive regulation can be computed from figure 4 with eq (7) and eq (8) for the steady state solution.

$$
\frac{V_{o}}{T}=\frac{1}{J_{t} s+\frac{K_{t} K_{l}\left(t_{a} s+1\right)}{\left[\left(t_{b} s+1\right)\left(\frac{L}{R} s+1\right) R_{a}+K_{l} K_{i e}\left(t_{a} s+1\right)\right]}+\left[\frac{K_{e}\left(t_{b} s+1\right)\left(t_{2} s+1\right)+K_{2} K_{T A} K_{l}\left(t_{l} s+1\right)\left(t_{a} s+1\right)}{\left.\left.\left(t_{a} s+1\right) K_{l}\right) t_{2} s+1\right)}\right]}
$$

$$
\begin{equation*}
\frac{V_{o}}{T} \frac{}{s \rightarrow 0}=\frac{1}{\frac{K_{t} K_{l}}{R_{a}+K_{l} K_{i e}} x \frac{K_{e}+K_{2} K_{T A} K_{l}}{K_{l}}} \tag{7}
\end{equation*}
$$

Equation 8 is rearranged as given in eq 9 . The open loop servo gain of eq (6) is rearranged in eq(10). Substituting eq (10) into eq (9) results in eq (11), which is simplified in eq (12).
$\frac{V_{o}}{T} \frac{R_{a}+K_{l} K_{i e}}{s \rightarrow 0}=\frac{R_{a}+K_{l} K_{i e}}{K_{t}\left[K_{e}+K_{2} K_{T A} K_{l}\right]}=\frac{K_{e} K_{t}+K_{l} K_{2} K_{t} K_{T A}}{}$
$K_{T A} K_{1} K_{2}=K_{v o} K_{e}$
$\frac{V_{o}}{T}=\frac{R_{a}+K_{1} K_{i e}}{K_{e} K_{t}+K_{v o} K_{e} K_{t}}$
$\frac{V_{o}}{T}=\frac{R_{a}+K_{l} K_{i e}}{K_{e} K_{l}\left(1+K_{v o}\right)}$ (Speed regulation equation)

Dimensional Analysis

It is important to know the units of the parameters in eq. (12) for both dc and BLDC electric servos. The unit dimensions are shown as follows:

DC DRIVES

R_{a} (Armature resistance)
$\mathrm{R}_{\mathrm{a}}[$ ohms $]$
$\frac{R_{a(l-l)}}{2}[o h m s]$
K_{e} (Voltage constant)
$\left[\frac{\text { volts }-\mathrm{sec}}{\mathrm{rad}}\right]$
$\frac{K_{e(l-l)}}{\sqrt{3}}\left[\frac{\text { volts }-\mathrm{sec}}{\mathrm{rad}}\right]$
K_{t})Torque constant)

$$
\left[\frac{l b-i n}{r a d}\right]
$$

$$
\left[\frac{l b-i n}{r a d}\right]
$$

K_{vo} (Open loop gain)

$$
\left[\frac{\text { volt }}{\text { volt }}\right] \quad\left[\frac{\text { volt }}{\text { volt }}\right]
$$

Dimensional analysis of eq 12
$\frac{V_{o}}{T}=\frac{o h m s+\frac{v}{v} x \frac{v}{a}}{\frac{v}{r / s} x \frac{l b-i n}{a} x \frac{v}{v}}=\left[\frac{\mathrm{rad} / \mathrm{sec}}{\mathrm{lb}-\mathrm{in}}\right]$

EXAMPLE

Motor - Kollmorgen M607B
$\frac{R_{a(l-l)}}{2}=\frac{0.189[\mathrm{ohm}]}{2}=0.094[\mathrm{ohm}]$
$\frac{K_{e(l-l)}}{\sqrt{3}}=\frac{0.646}{\sqrt{3}}=0.3729\left[\frac{\mathrm{volt}-\mathrm{sec}}{\mathrm{rad}}\right]$
Rated Torque $=396[1 \mathrm{lb}-\mathrm{in}]$
$K_{t}=9.9\left[\frac{l b-i n}{A}\right]$
Rated Speed $=3000[\mathrm{rpm}]$
$\mathrm{K}_{\mathrm{ie}}=$ Current loop feedback constant $=\frac{3 v}{40 A}=0.075\left[\frac{v}{A}\right]$
$K_{1}=20\left[\frac{v}{v}\right]$
$K_{T A}=0.0286\left[\frac{\mathrm{volt}-\mathrm{sec}}{\mathrm{rad}}\right]$
$K_{2}=651\left[\frac{\text { volt }}{\text { volt }}\right]$
$K_{v o}($ velocity open loop gain $)=\frac{K_{T A} \times K_{1} \times K_{2}}{K_{e}}=\frac{0.0286 \times 20 \times 651}{0.3729}=1000\left[\frac{\text { volt }}{\text { volt }}\right]$

REGULATION

$\frac{V_{o}}{T}=\frac{R_{a}+K_{l} K_{i e}}{K_{e} K_{t}\left(1+K_{v o}\right)}=\frac{0.094+20 \times 0.075}{0.3729 \times 9.9 \times(1+1000)}=\frac{1.594}{3691}=0.00043\left[\frac{\text { volt }}{\mathrm{lb}-\mathrm{in}}\right]$
Speed drop at rated torque and rated speed-
Speed drop $=0.00043\left[\frac{\mathrm{rad} / \mathrm{sec}}{\mathrm{lb}-\mathrm{in}}\right] \times 396[\mathrm{lb}-\mathrm{in}]=0.17\left[\frac{\mathrm{rad}}{\mathrm{sec}}\right]$

$$
0.17\left[\frac{\mathrm{rad}}{\mathrm{sec}}\right] x\left[\frac{\mathrm{rev}}{2 \pi \mathrm{rad}}\right] x\left[\frac{60 \mathrm{sec}}{\mathrm{~min}}\right]=1.626[\mathrm{rpm}]
$$

REGULATION $=\frac{\text { Changein speed }}{\text { Rated speed }}=\frac{1.626[\mathrm{rpm}]}{3000[\mathrm{rpm}]}=0.000542$

Velocity servo \% REGULATION $=0.000542 \times 100=0.0542$ \%
If a position loop is added to the velocity servo drive the block diagram is shown in figure (5). The position loop velocity constant $\left(\mathrm{K}_{\mathrm{v}}\right)$ is the position open loop gain.

Fig. 5 Electric servo-drive block diagram.

Fig. 6 Electric servo-drive block diagram.
$K_{v}=K_{D} K_{f b} x \frac{V_{o}}{v_{2}}=K_{D} K_{f b} x \frac{K_{l} K_{2}}{\left(K_{e}+K_{1} K_{2} K_{t} K_{T A}\right)}$
Reducing eq (13) yields
$K_{v}=\frac{K_{i} K_{2} K_{D} K_{j b}}{\left(K_{e}+K_{l} K_{2} K_{T A}\right)}$
Rearranging eq (6) yields
$K_{e} K_{v o}=K_{1} K_{2} K_{T A}$
Substituting eq (15) into eq (14) yields
$K_{v}=\frac{K_{1} K_{2} K_{D} K_{f b}}{\left(K_{e}+K_{e} K_{v o}\right)}=\frac{K_{1} K_{2} K_{f b}}{K_{e}\left(1+K_{v o}\right)}$
Rearranging yields

$$
\begin{equation*}
K_{v}\left(1+K_{v o}\right)=\frac{K_{1} K_{2} K_{D} K_{f b}}{K_{e}} \tag{17}
\end{equation*}
$$

From figure 6 , the position (θ) vs Torque (T) is expressed as-
$\frac{\theta}{T}=\frac{R_{a}+K_{l} K_{i e}}{K_{t} K_{l} K_{D} K_{f b} K_{2}}$ (steady state compliance)
$\frac{T}{\theta}=\frac{K_{1} K_{2} K_{D} K_{t} K_{b b}}{R_{a}+K_{1} K_{i e}} \quad$ (steady state stiffness)
Substituting eq (17) into eq (19) yields
$\frac{T}{\theta}=\frac{K_{v}\left(1+K_{v o}\right) K_{e} K_{t}}{R_{a}+K_{l} K_{i e}}$
$\frac{T}{\theta}=\frac{K_{v}\left(1+K_{v o}\right) K_{e} K_{t}}{R_{a}\left(1+\frac{K_{1} K_{i e}}{R_{a}}\right)}$

Figure 5 is the position servo block diagram. The input command and the output θ_{o} are in radians. However if the input command is a given position over a period of time; that is a velocity, and the output position follows the command with a lag and this lag is
defined as the "following error" in a type 1 position servo. Therefore, if the input command and the output is differentiated (θs), the drive will be in a velocity mode expressed as-
$\frac{\theta_{o}}{T}=\frac{V_{o}}{s T}=\frac{R_{a}+K_{l} K_{i e}}{K_{v}\left(1+K_{v o}\right) K_{e} K_{t}} \quad\left[\frac{\mathrm{rad} / \mathrm{sec}}{\mathrm{lb}-\mathrm{in}}\right]$
eq (22)

Dimensional check of eq (22)
$\frac{o h m s+\frac{v}{v} \frac{v}{A}}{\sec \left[\frac{l}{\sec } \frac{v}{v} \frac{v}{\frac{r a d}{\sec }} \frac{\mathrm{lb}-\mathrm{in}}{A}\right]}=\left[\frac{\mathrm{rad} / \mathrm{sec}}{\mathrm{lb}-\mathrm{in}}\right]$

EXAMPLE

Using the same motor as in the previous example with the same torque and velocity inner servo loop, the new variable is the position open loop gain (velocity constant) K_{v}. Thus the variables are repeated as-
$\mathrm{R}_{\mathrm{a}}=0.094$ [ohms]
$\mathrm{K}_{\mathrm{e}}=0.3729$ [$\mathrm{voltt}-\mathrm{sec} / \mathrm{rad}$]
Rated torque $=396[\mathrm{lb}-\mathrm{in}]$
$\mathrm{K}_{\mathrm{t}}=9.9$ [lb-in/amp]
Rated speed $=3000[\mathrm{rpm}]$
$\mathrm{K}_{\mathrm{ie}}=0.075[\mathrm{volt} / \mathrm{amp}]$
$\mathrm{K}_{\mathrm{i}}=20[\mathrm{v} / \mathrm{v}]$
$\mathrm{K}_{\mathrm{TA}}=0.0286[\mathrm{volt}-\mathrm{sec} / \mathrm{rad}]$
$\mathrm{K}_{2}=651[\mathrm{volt} / \mathrm{volt}]$
$\mathrm{K}_{\mathrm{vo}}=1000[\mathrm{volt} / \mathrm{volt}]$
The position loop gain will be $\mathrm{K}_{\mathrm{v}}=1[\mathrm{ipm} / \mathrm{mill}]=16.66[\mathrm{rad} / \mathrm{sec}]$
The regulation of equatrion (22) can be calculated as-
$\frac{V_{o}}{T}=\frac{R_{a}+K_{l} K_{i e}}{K_{v}\left(1+K_{v o}\right) K_{e} K_{t}}=\frac{0.094+20 \times 0.075}{16.66(1+1000) 0.3729 \times 9.9}=0.00002589$
Speed drop at rated torque and rated speed-
Speed drop $=0.00002589\left[\frac{\mathrm{rad}}{\mathrm{sec}}\right] \times 396[\mathrm{lb-in}]=0.0102\left[\frac{\mathrm{rad}}{\mathrm{sec}}\right]$
$0.0102\left[\frac{\mathrm{rad}}{\mathrm{sec}}\right] x\left[\frac{\mathrm{rev}}{2 \pi \mathrm{rad}}\right] x\left[\frac{60 \mathrm{sec}}{\mathrm{min}}\right]=0.0974[\mathrm{rpm}]$

REGULATION $=\frac{\text { changein speed }}{\text { rated speed }}=\frac{0.0979[\mathrm{rpm}]}{3000\|\mathrm{rpm}\|}=0.0000326$
Position servo in velocity mode \% REGULATION $=0.0000326 \times 100=0.00326 \%$

Reference: G. Younkin, INDUSTRIAL SERVO CONTROL SYSTEMS-Fundamentals and Applications, $2{ }^{\text {nd }}$ Edition, Chapter 12, 2002, Marcel Dekker, Inc, N.Y.,N.Y.

